Муниципальное общеобразовательное бюджетное учреждение средняя общеобразовательная школа с. Карагаево

РАССМОТРЕНО» на

заседании

ШМО учителей естественно-

математического цикла.

Руководитель ШМО

Ший/Ф.А.Шаймуратова/

Протокол № / от «Ы» ОУ 2023г.

«Утверждаю» директор МОБУ СОШ с. Карагаево Ахтямова Л.Н. «Зу» ОР 2023 г.

РАБОЧАЯ ПРОГРАММА ПО ХИМИИ

Рабочая программа составлена на основе Программы основного общего образования. Химия 8-9 классы. Авторы: Г.Е.Рудзитес, Ф.Г.Фельдман. авт.-сост. Н.Н.Гара. - Просвещение -2015.

Составители: Магадеев Р.Ж.

Уровень обучения: (8-9 классы)

Количество часов: 8 класс 68 ч

9 класс 68 ч

І. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ.

Изучение химии в основной школе дает возможность достичь следующих результатов в направлении личностного развития:

- воспитание российской гражданской идентичности: патриотизма, любви и уважению к Отечеству, чувства гордости за свою Родину, за российскую химическую науку;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, а также социальному, культурному, языковому и духовному многообразию современного мира;
- формирование ответственного отношения к учению, готовности и способности к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору профильного образования на основе информации о существующих профессиях и личных профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- формирование коммуникативной компетентности в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- формирование понимания ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книгами, доступными инструментами и техническими средствами информационных технологий;
- формирование основ экологического сознания на основе признания ценности жизни во всех её проявлениях и необходимости ответственного, бережного отношения к окружающей среде;
- развитие готовности к решению творческих задач, умения находить адекватные способы поведения и взаимодействия с партнерами во время учебной и внеучебной деятельности, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная поисково-исследовательская, клубная, проектная, кружковая и т. п.)

Регулятивные УУД:

- осознавать самого себя как движущую силу своего научения, свою спсобность к мобилизации сил и энергии, волевому усилию к выбору в ситуации мотивационного конфликта, к преодолению препятствий;
- определять новый уровень отношения к самому себе как субъекту деятельности.

Познавательные УУД:

• способность сознательно организовывать свою учебную деятельность;

- владение умениями работать с учебной и внешкольной информацией (систематизировать, анализировать и обобщать факты, составлять план, формулировать и обосновывать выводы, конспектировать), использовать современные источники информации;
- способность решать творческие задачи, представлять результаты своей деятельности в различных формах (сообщение, презентация) Коммуникативные УУД:
- слушать и слышать друг друга, с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- добывать недостающую информацию с помощью вопросов (познавательная инициативность);
- устанавливать рабочие отношения, эффективно сотрудничать и способствовать продуктивной кооперации.

Предметные результаты обучения

Обучаемый научится:

- описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости;
 - сравнивать по составу оксиды, основания, кислоты, соли;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- описывать состав, свойства и значение (в природе и практической деятельности человека) простых веществ кислорода и водорода;
- давать сравнительную характеристику химических элементов и важнейших соединений естественных семейств;
 - пользоваться лабораторным оборудованием и химической посудой;
- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.

Обучаемый получит возможность научиться:

• грамотно обращаться с веществами в повседневной жизни;

- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение вещества

Обучаемый научится:

- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерны, и инертные элементы (газы) для осознания важности упорядоченности научных знаний;
 - раскрывать смысл периодического закона Д. И. Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронно-ионные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные этапы открытия Д. И. Менделеевым периодического закона и периодической системы химических элементов, жизнь и многообразную научную деятельность учёного;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.

Обучаемый получит возможность научиться:

- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.

Многообразие химических реакций

Обучаемый научится:

- объяснять суть химических процессов и их принципиальное отличие от физических;
 - называть признаки и условия протекания химических реакций;
- устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительно-восстановительные);
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- приготовлять растворы с определённой массовой долей растворённого вещества.

Обучаемый получит возможность научиться:

• приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ

Многообразие веществ

Обучаемый научится:

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
 - составлять формулы веществ по их названиям;
 - определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;

- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ. Обучаемый получит возможность научиться:
- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль

Метапредметные результаты обучения

Учащиеся должны уметь:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
 - составлять (индивидуально или в группе) план решения проблемы;
- работать по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки;
- анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений;
- осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- строить логическое рассуждение, включающее установление причинно-следственных связей.
- создавать схематические модели с выделением существенных характеристик объекта.
 - составлять тезисы, различные виды планов (простых, сложных и т.п.).

- преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).
- уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

ІІ. СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

Химия 8 класс

<u>Раздел 1.</u> Основные понятия химии (уровень атомно – молекулярных представлений)

Тема 1. «Первоначальные химические понятия» (21 час)

Предмет химии. Химия как часть естествознания. Вещества и их свойства. Чистые вещества и смеси. Методы познания в химии: наблюдение, эксперимент. Приемы безопасно работы с оборудованием и веществами. Строение пламени.

Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, кристаллизация, дистилляция. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций.

Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения. Кристаллические и аморфные вещества. Кристаллические решетки: ионная, атомная и молекулярная. Простые и сложные вещества. Химический элемент. Металлы и неметаллы. Атомная единица массы. Относительная атомная масса. Язык химии. Знаки химических элементов. Закон постоянства состава вещества. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. Вычисления по химическим формулам. Массовая доля химического элемента в сложном веществе.

Валентность химических элементов. Определение валентности элементов по формулам бинарных соединений. Составление химических формул бинарных соединений по валентности.

Атомно – молекулярное учение. Закон сохранения массы веществ. Жизнь и деятельность М.В. Ломоносова. Химические уравнения. Типы химических реакций.

Практическая работа №1. Правила техники безопасности при работе в химическом кабинете. Ознакомление с лабораторным оборудованием. Строение пламени.

Практическая работа №2. Очистка загрязнённой поваренной соли.

Демонстрации. Лабораторное оборудование и приемы безопасной работы с ним. Способы очистки веществ: кристаллизация, дистилляция, хроматография. Нагревание сахара. Нагревание парафина. Горение парафина. Взаимодействие растворов: карбоната натрия и соляной кислоты, сульфата меди и гидроксида натрия. Взаимодействие свежеосажденного гидроксида меди с раствором глюкозы при обычных условиях и при нагревании.

Примеры простых и сложных веществ в разных агрегатных состояниях. Шаростержневые модели молекул метана, аммиака, воды, хлороводорода, оксида углерода (4). Модели кристаллических решеток. Опыты, подтверждающие закон сохранения массы веществ. Химические соединения количеством вещества 1 моль.

Лабораторные опыты. Рассмотрение веществ с различными физическими свойствами. Разделение смеси с помощью магнита. Примеры физических и химических явлений. Реакции, иллюстрирующие основные признаки характерных реакции. Ознакомление с образцами простых веществ (металлы и неметаллы) и сложных веществ, минералов и горных пород.

Расчетные задачи. Вычисление относительной молекулярной массы вещества по формуле. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям элементов. Вычисления по химическим уравнениям массы или количества вещества по известной массе или количеству одного из вступающих в реакцию или получающихся веществ.

Тема 2. «Кислород. Горение» (5 часов)

Кислород. Нахождение в природе. Получение кислорода в лаборатории и промышленности. Физические и химические свойства кислорода. Горение. Оксиды. Применение кислорода. Круговорот кислорода в природе. Озон, аллотропия кислорода. Воздух и его состав. Защита атмосферного воздуха от загрязнений.

Практическая работа №3 Получение и свойства кислорода.

Демонстрации. Физические свойства кислорода. Получение и собирание кислорода методом вытеснения воздуха и воды. Условия возникновения и прекращения горения. Определение состава воздуха.

Лабораторные опыты. Ознакомление с образцами оксидов.

Тема 3. «Водород» (3 часа)

Водород. Нахождение в природе. Получение водорода в лаборатории и промышленности. Физические и химические свойства водорода. Водород – восстановитель. Меры безопасности при работе с водородом. Применение водорода.

Практическая работа №4. Получение водорода и изучение его свойств.

Демонстрации. Получение водорода в аппарате Кипа, проверка водорода на чистоту, горение водорода, собирание водорода методом вытеснения воздуха и воды.

Лабораторные опыты. Взаимодействие водорода с оксидом меди (11).

Тема 4. «Вода. Растворы» (8 часов)

Вода. Методы определения состава воды — анализ и синтез. Физические свойства воды. Вода в природе и способы ее очистки. Аэрация воды. Химические свойства воды. Применение воды. Вода — растворитель. Растворимость веществ в воде. Массовая доля растворенного вещества.

Демонстрации. Анализ воды. Синтез воды. Взаимодействие воды с натрием: кальцием, магнием, оксидом кальция, оксидом углерода (4), оксидом фосфора (5) и испытание полученных растворов индикаторами. Знакомство с образцами оксидов, кислот, оснований и солей. Нейтрализация щёлочи кислотой в присутствии индикатора.

Расчётные задачи. Нахождение массовой доли растворённого вещества в растворе. Вычисление массы растворённого вещества и воды для приготовления раствора определённой концентрации.

Тема 5. «Количественные отношения в химии» (5 часов)

Количественные отношения в химии. Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Расчетные задачи. Объёмные отношения газов при химических реакциях.

Тема 6. «Важнейшие классы неорганических соединений» (12 часов)

Важнейшие классы неорганических соединений. Оксиды: состав, классификация. Основные и кислотные оксиды. Номенклатура оксидов. Физические и химические свойства, получение и применение оксидов.

Гидроксиды. Классификация гидроксидов. Основания. Состав. Щелочи и нерастворимые основания. Номенклатура. Физические и химические свойства оснований. Реакция нейтрализации. Получение и применение оснований. Амфотерные оксиды и гидроксиды.

Кислоты. Состав. Классификация. Номенклатура. Физические и химические свойства кислот. Вытеснительный ряд металлов.

Соли. Состав. Классификация. Номенклатура. Физические свойства солей. Растворимость солей в воде. Химические свойства солей. Способы получения солей. Применение солей.

Генетическая связь между основными классами неорганических соединений.

Практическая работа №5 «Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Демонстрации. Образцы оксидов, кислот, оснований и солей. Нейтрализация щелочи кислотой в присутствии индикатора.

Лабораторные опыты. Опыты, подтверждающие химические свойства оксидов, кислот, оснований и солей.

Раздел 2. . Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома

Тема 7. «Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома» (7 часов)

Первые попытки классификации химических элементов. Понятие о группах сходных элементов. Естественные семейства щелочных металлов и галогенов. Благородные газы. Периодический закон Д.И.Менделеева. Периодическая система как естественно — научное классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И. Менделеева» (короткая форма): А- и Б- группы, периоды. Физический смысл порядкового элемента, номера периода, номера группы (для элементов А-групп).

Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Современная формулировка понятия «химический элемент».

Электронная оболочка атома: понятие об энергетическом уровне (электронном слое), его ёмкости. Заполнение электронных слоев у атомов элементов первого – третьего периодов. Современная формулировка периодического закона.

Значение периодического закона. Научные достижения Д.И. Менделеева: исправление относительных атомных масс, предсказание существования неоткрытых элементов, перестановки химических элементов в периодической системе. Жизнь и деятельность Д.И. Менделеева.

Практическая работа №6 «Изучение кислотно-основных свойств гидроксидов, образованных химическими элементами 3 периода.

Демонстрации. Физические свойства щелочных металлов. Взаимодействие оксидов натрия, магния, фосфора, серы с водой, исследование свойств полученных продуктов. Взаимодействие натрия и калия с водой. Физические свойства галогенов. Взаимодействие алюминия с хлором, бромом и йодом.

Лабораторные опыты. Вытеснение галогенами друг друга из растворов солей. Взаимодействие гидроксида цинка с растворами кислот и щелочей.

Раздел 3. Строение вещества.

Тема 9. «Строение вещества. Химическая связь» (7 часов)

Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степеней окисления элементов.

Демонстрации. Модели кристаллических решеток ковалентных и ионных соединений. Сопоставление физико-химических свойств соединений с ковалентными и ионными связями.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

Введение (повторение основных вопросов курса 8 кл. и введение в курс 9 класса) Характеристика элемента по его положению в периодической системе химических элементов Д.И.Менделеева. Генетические ряды металла и неметалла. Химические свойства основных классов неорганических веществ: оксидов, кислот, оснований и солей.

Демонстрации: 1.Получение и изучение характерных свойств основного и кислотного оксидов, оснований и кислот на примерах MgO и CO_2 , $Mg(OH)_2$ и H_2SO_4 .

Раздел1. Многообразие химических реакций.

Тема №1 «Классификация химических реакций».

Окислительно-восстановительные и неокислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса. Реакции эндотермические и экзотермические. Тепловой эффект хим. реакции. Термохимическое уравнение. Скорость химических реакций. Первоначальные представления о катализе. Обратимые реакции. Классификация хим. реакций.

Лабораторные опыты: 1.Окислительно-восстановительные реакции (взаимодействие сульфата меди (II) и соляной кислоты с цинком).

Расчетные задачи. 1. Расчёты по термохимическим уравнениям.

Тема№2 «Электролитичесакя диссоциация».

Электролиты и неэлектролиты. Электролитическая диссоциация веществ в водных растворах. Ионы. Катионы и анионы. Гидратная теория растворов. Электролитическая диссоциация кислот, щелочей и солей. Слабые и сильные электролиты. Степень диссоциации. Реакции ионного обмена. Окислительно-восстановительные реакции. Окислитель, восстановитель.

Демонстрации. 1.Испытание растворов веществ на электрическую проводимость. 2.Движение ионов в электрическом поле.

Лабораторные опыты. 1. Реакции обмена между растворами электролитов.

Практические работы 1.Решение экспериментальных задач по теме «Свойства кислот, оснований, солей как электролитов».

Раздел 2. Многообразие веществ.

Тема №3 «Галогены».

Общая характеристика галогенов на основе их положения в Периодической системе элементов. Общность и различие в строении атомов. Молекулы простых веществ и галогенидов. Физические и химические свойства галогенов. Нахождение в природе, получение, физические и химические свойства хлора, растворимость в воде, окислительные свойства взаимодействие с металлами, водородом. Взаимодействие с водой. Применение хлора. Действие хлора на организм. Получение хлороводорода и соляной кислоты. Физические и химич. свойства, применение соляной кислоты, значение соляной кислоты для нормального пищеварения. Качественные реакции на хлорид-, бромид-, иодид- ионы.

Демонстрации: 1.Образцы галогенов – простых веществ. 2.Вытеснение хлором брома или йода из растворов их солей.

Лабораторные опыты: 1.Вытеснение галогенами друг друга из растворов их соединений (галогенидов). 2.Распознавание хлорид-, бромид-, йодид-ионов в растворах. **Практические работы:** 1.Получение соляной кислоты и изучение её свойств.

Тема №4 «Кислород и сера» .

Положение кислорода и серы в периодической системе химических элементов, строение их атомов. Аллотропия кислорода — озон.

Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Оксид серы (IV). Сероводородная и сернистая кислоты и их соли. Оксид серы (VI). Серная кислота и ее соли. Окислительные свойства концентрированной серной кислоты.

Демонстрации. 1. Аллотропия кислорода и серы. 2. Ознакомление с образцами серы и её природных соединений (сульфидов, сульфатов).

Лабораторные опыты. 1. Распознавание сульфид-ионов в растворе. 2. Распознавание сульфит-ионов в растворе. 3. Распознавание сульфат-ионов в растворе.

Практические работы 1.Решение экспериментальных задач по теме «Кислород и сера».

Расчетные задачи. Вычисления по химическим уравнениям реакций массы, количества или объема вещества по известной массе, количеству или объему одного из вступающих или получающихся в реакции веществ.

Тема №5 «Азот и фосфор».

Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот азота в природе. Аммиак. Физические и химические свойства аммиака, получение и применение. Соли аммония. Оксиды азота (II) и (IV). Азотная кислота и ее соли. Окислительные свойства азотной кислоты.

Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Значение фосфора для организма человека. Оксид фосфора (V). Ортофосфорная кислота и ее соли. Минеральные удобрения. Влияние избытка нитратов в пищевых продуктах на здоровье человека.

Демонстрации. 1.Получение аммиака и его растворение в воде. 2.Ознакомление с образцами природных нитратов, фосфатов. 3.Ознакомление с азотными и фосфорными удобрениями.

Лабораторные опыты. 1. Взаимодействие солей аммония со щелочами.

Практические работы 1.Получение аммиака и изучение его свойств.

Расчётные задачи: Вычисление массовой доли вещества в растворе.

Тема №6 «Углерод и кремний».

Положение углерода и кремния в периодической системе химических элементов, строение их атомов. Углерод, аллотропные модификации, физические и химические свойства углерода. Угарный газ, свойства и физиологическое действие на организм. Углекислый газ, угольная кислота и ее соли. Круговорот углерода в природе Кремний. Оксид кремния (IV). Кремниевая кислота и ее соли. Стекло. Цемент. Демонстрации. 1. Кристаллические решетки алмаза и графита. 2. Ознакомление с образцами природных карбонатов и силикатов. 3. Ознакомление с различными видами топлива. 4. Ознакомление с видами стекла.

Лабораторные опыты. 1.Проведение качественной реакции на углекислый газ. 2.Качественная реакция на карбонат-ионы. 3. Качественная реакция на силикат-ионы. **Практические работы** 1.Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов.

Расчетные задачи. Вычисления по химическим уравнениям реакций массы, объема или количества вещества одного из продуктов реакции по массе, объему или количеству исходного вещества, содержащего определенную долю примесей.

Тема №7 «Металлы».

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлическая связь. Физические и химические свойства металлов. Ряд напряжений металлов.

Понятие о металлургии. Способы получения металлов. Сплавы (сталь, чугун, дюралюминий, бронза). Проблема безотходных производств в металлургии и охрана окружающей среды.

Щелочные металлы. Положение щелочных металлов в периодической системе и строение атомов. Нахождение в природе. Физические и химические свойства. Применение щелочных металлов и их соединений. Значение натрия и калия, как биогенных макроэлементов, для организма человека.

Щелочноземельные металлы. Положение щелочноземельных металлов в периодической системе и строение атомов. Нахождение в природе. Кальций и его соединения. Жесткость воды и способы ее устранения. Значение кальция, как биогенного макроэлемента, для организма человека.

Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия.

Железо. Положение железа в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства железа. Оксиды, гидроксиды и соли железа (II) и железа (III). Значение железа, как биогенного макроэлемента, для организма человека.

Демонстрации. 1.Ознакомление с образцами важнейших солей натрия, калия, природных соединений кальция, рудами железа, соединениями алюминия.

- 2.Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой.
- 3.Сжигание железа в кислороде и хлоре.

Лабораторные опыты. 1.Взаимодействие металлов с растворами солей.

- 2.Ознакомление со свойствами и взаимопревращениями карбонатов и гидрокарбонатов.
- 3.Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами.
- 4. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Практические работы. 1. Решение экспериментальных задач по теме «Металлы». **Расчетные задачи.** Вычисления по химическим уравнениям реакций массы, объема или количества вещества одного из продуктов реакции по массе, объему или количеству исходного вещества, содержащего определенную долю примесей.

Раздел 3. Краткий обзор важнейших органических веществ.

Тема№8. «Первоначальные представления об органических вещества» .

Предмет органической химии. Вещества органические и неорганические. Теория химического строения органических веществ А.М. Бутлерова. Молекулярные и структурные формулы органических веществ. Упрощённая классификация органических веществ. Предельные углеводороды: метан и этан (строение молекул, горение метана и этана, дегидрирование этана, применение метана). Непредельные углеводороды: этилен и ацетилен строение молекулы этилена, двойная связь. Взаимодействие этилена с водой, реакция полимеризации этилена. Полиэтилен и его значения. Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Физиологическое действие этанола. Трёхатомный спирт — глицерин. Предельные одноосновные карбоновые кислоты на примере уксусной кислоты. Её свойства и применение. Реакция этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот. Понятие об аминокислотах. Заменимые и

незаменимые аминокислоты. Реакции поликонденсации. Белки, их строение и биологическая роль. Понятие об углеводах. Глюкоза, её свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль. Значение белков, жиров и углеводов в организации рационального питания человека.

Демонстрации: 1. Модели молекул метана и других углеводородов. 2. Получение этилена и взаимодействие его с бромной водой и раствором перманганата калия.

- 4. Образцы изделий из полиэтилена, полипропилена, поливинилхлорида. 5. Образцы этанола и глицерина и растворение их в воде. 6. Свойства уксусной кислоты.
- 7. Исследование свойств жиров: растворимость в воде и органических растворителях.
- 8.Взаимодействие глюкозы с аммиачным раствором оксида серебра.
- Лабораторные опыты. 1. Качественная реакция на крахмал.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ (по разделам)

№ п/п	Разделы программы	Количество часов	Количество контрольных	Количество практических
			работ	работ
1	Основные понятия	54	3	6
	1 химии (уровень атомно			
	– молекулярных			
	представлений)			
2	Периодический закон и	7	-	-
	периодическая система			
	химических элементов			
	Д.И. Менделеева.			
	Строение атома			
3	Строение вещества.	7	1	-
	Химическая связь.			
4	Резервное время	2		
Итого:		70	4	6